Samples n coordinates with a regular angle.
Arguments
- coo
matrix
of(x; y)
coordinates or any Coo object.- n
integer
, the number of points to sample.
Details
By design, this function samples among existing points, so using coo_interpolate prior to it may be useful to have more homogeneous angles. See examples.
See also
Other sampling functions:
coo_extract()
,
coo_interpolate()
,
coo_sample_prop()
,
coo_sample()
Other coo_ utilities:
coo_aligncalliper()
,
coo_alignminradius()
,
coo_alignxax()
,
coo_align()
,
coo_baseline()
,
coo_bookstein()
,
coo_boundingbox()
,
coo_calliper()
,
coo_centdist()
,
coo_center()
,
coo_centpos()
,
coo_close()
,
coo_down()
,
coo_dxy()
,
coo_extract()
,
coo_flipx()
,
coo_force2close()
,
coo_interpolate()
,
coo_is_closed()
,
coo_jitter()
,
coo_left()
,
coo_likely_clockwise()
,
coo_nb()
,
coo_perim()
,
coo_range()
,
coo_rev()
,
coo_right()
,
coo_rotatecenter()
,
coo_rotate()
,
coo_sample_prop()
,
coo_sample()
,
coo_scale()
,
coo_shearx()
,
coo_slice()
,
coo_slidedirection()
,
coo_slidegap()
,
coo_slide()
,
coo_smoothcurve()
,
coo_smooth()
,
coo_template()
,
coo_trans()
,
coo_trimbottom()
,
coo_trimtop()
,
coo_trim()
,
coo_untiltx()
,
coo_up()
,
is_equallyspacedradii()
Examples
stack(bot)
bot <- coo_center(bot)
stack(coo_samplerr(bot, 12))
coo_plot(bot[1])
coo_plot(rr <- coo_samplerr(bot[1], 12))
cpos <- coo_centpos(bot[1])
segments(cpos[1], cpos[2], rr[, 1], rr[, 2])
# Sometimes, interpolating may be useful:
shp <- hearts[1] %>% coo_center
# given a shp, draw segments from each points on it, to its centroid
draw_rads <- function(shp, ...){
segments(shp[, 1], shp[, 2], coo_centpos(shp)[1], coo_centpos(shp)[2], ...)
}
# calculate the sd of argument difference in successive points,
# in other words a proxy for the homogeneity of angles
sd_theta_diff <- function(shp)
shp %>% complex(real=.[, 1], imaginary=.[, 2]) %>%
Arg %>% `[`(-1) %>% diff %>% sd
# no interpolation: all points are sampled from existing points but the
# angles are not equal
shp %>% coo_plot(points=TRUE, main="no interpolation")
shp %>% coo_samplerr(64) %T>% draw_rads(col="red") %>% sd_theta_diff
#> [1] 0.03301767
# with interpolation: much more homogeneous angles
shp %>% coo_plot(points=TRUE)
shp %>% coo_interpolate(360) %>% coo_samplerr(64) %T>% draw_rads(col="blue") %>% sd_theta_diff
#> [1] 0.00696334