stat_lda.Rd
Calculations are delegated to MASS::lda
stat_lda0(x, f, full = FALSE, ...) stat_lda(x, f, ...) stat_lda_bootstrap(x, f, ..., k = 1000)
x |
|
---|---|
f |
|
full |
|
... | addtional parameters forwardes to MASS::lda |
k |
|
With full=FALSE
, stat_lda0
is roughly 6 times faster which
justifies both stat_lda0
existence and full
argument.
Typically, stat_lda_bootstrap
takes profit from that.
stat_lda0
: Vanilla lda
stat_lda
: Wrapped lda
stat_lda_bootstrap
: Bootstrapped lda
stat_lda_bootstrap
is based on:
Evin, Cucchi, Cardini, Vidarsdottir, Larson and Dobney (2013)
"The long and winding road: identifying pig domestication through molar size and shape."
Journal of Archaeological Science 40:1 735‑43.
https://doi.org/10.1016/j.jas.2012.08.005
(x <- dummy_df %>% stat_lda_prepare(foo2_NA, a:e))#>#>#>#> $df #> # A tibble: 98 x 4 #> foo2_NA a c e #> <fct> <dbl> <dbl> <dbl> #> 1 G 0.445 0.179 3.11 #> 2 C 1.50 0.775 3.20 #> 3 D -1.98 0.841 3.20 #> 4 F 0.125 0.287 3.19 #> 5 D -1.41 0.974 3.12 #> 6 F -1.07 0.680 3.13 #> 7 E 0.752 0.435 3.19 #> 8 I 0.588 0.0854 3.15 #> 9 B -0.158 0.315 3.15 #> 10 F 1.04 0.538 3.12 #> # … with 88 more rows #> #> $f_naked #> [1] G C D F D F E I B F D L A B K G D H A L G A D C F J H E E G F E D I G B A F #> [39] F G I J K D B B I I K B B C F B B C D F C D I E D E I B H L C G K A J B D G #> [77] D E H C K C H H H A H A L B H D H B E H H F #> Levels: A B C D E F G H I J K L #> #> $coe_naked #> # A tibble: 98 x 3 #> a c e #> <dbl> <dbl> <dbl> #> 1 0.445 0.179 3.11 #> 2 1.50 0.775 3.20 #> 3 -1.98 0.841 3.20 #> 4 0.125 0.287 3.19 #> 5 -1.41 0.974 3.12 #> 6 -1.07 0.680 3.13 #> 7 0.752 0.435 3.19 #> 8 0.588 0.0854 3.15 #> 9 -0.158 0.315 3.15 #> 10 1.04 0.538 3.12 #> # … with 88 more rows #> #> $cols_constant #> [1] "d" #> #> $cols_collinear #> [1] "b" #> #> $cols_NA #> foo2_NA a b c d e #> 2 0 0 0 0 0 #> #> $rows_NA #> [1] 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 #> [38] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #> [75] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #>stat_lda0(x$coe_naked, x$f_naked)#> # A tibble: 98 x 4 #> actual predicted correct posterior #> <fct> <fct> <lgl> <dbl> #> 1 A B FALSE 0.208 #> 2 A B FALSE 0.149 #> 3 A D FALSE 0.239 #> 4 A D FALSE 0.183 #> 5 A D FALSE 0.188 #> 6 A H FALSE 0.149 #> 7 A H FALSE 0.151 #> 8 B B TRUE 0.183 #> 9 B B TRUE 0.152 #> 10 B B TRUE 0.176 #> # … with 88 more rowsstat_lda(dummy_df, foo2_NA, a:e)#>#>#>#>#>#> - 98 observations #> - 3 variables #> - 12 levels, unbalanced (N ranges from 3 to 13) #> #> - Accuracy: 0.163 #> - Within classes: min: 0.0306 (J), median: 0.0816 (C, E, G), max: 0.133 (B, D) #> - Posterior (correct): min: 0.127, median: 0.175, max: 0.4b <- stat_lda_bootstrap(dummy_df, foo2_NA, a:e, k=10)#>#>#>gg_stat_lda_bootstrap(b)