A dataset containing 40 bottle outlines that have been preprocessed and transformed using elliptic Fourier analysis. This dataset is used for demonstrating statistical methods in Momstats.
Format
A tibble with 40 rows and 5 variables:
coo: List-column of classc("out", "coo", "list")containing outline coordinates (nx2 matrices). Outlines have been centered, scaled to unit centroid size, aligned using PCA, and rotated so the rightmost point is at 0 radians.coe: List-column of classc("eft", "coe", "list")containing elliptic Fourier transform coefficients. Each element is a named numeric vector with 24 coefficients (6 harmonics × 4 coefficients: A, B, C, D) representing the shape in Fourier space.type: Factor with 2 levels ("whisky", "beer") indicating bottle type.fake: Factor with 1 level ("a") - a dummy grouping variable for examples.price: Numeric with random priceslength: Numeric vector containing the length of each outline along the major inertia axis (computed before standardization, also random because it ultimately depends on the size of original images in pixels...)
See also
Momocs2::bot for the original unprocessed bottle outlines
Momocs2::unfold()to expand coefficient columns for analysisMomocs2::fold()for the opposite transformation
Examples
# View structure
boteft
#> # A tibble: 40 × 7
#> id coo coe type fake price length
#> <chr> <out> <eft> <fct> <fct> <dbl> <dbl>
#> 1 brahma (138 x 2) <24> whisky a 3 1088.
#> 2 caney (168 x 2) <24> whisky a 1.2 994.
#> 3 chimay (189 x 2) <24> whisky a 3.8 644.
#> 4 corona (129 x 2) <24> whisky a 2.6 806.
#> 5 deusventrue (152 x 2) <24> whisky a 1.1 886.
#> 6 duvel (161 x 2) <24> whisky a 3.1 606.
#> 7 franziskaner (124 x 2) <24> whisky a 2.6 865.
#> 8 grimbergen (126 x 2) <24> whisky a 2.9 765.
#> 9 guiness (183 x 2) <24> whisky a 1.2 742.
#> 10 hoegardeen (193 x 2) <24> whisky a 3.6 1048.
#> # ℹ 30 more rows
# Examine coefficient structure
class(boteft$coe)
#> [1] "eft" "coe" "list"
class(boteft$coe[[1]])
#> [1] "eft" "numeric"
boteft$coe[[1]]
#> A1 A2 A3 A4 A5
#> 1.3427539129 0.0090863444 0.1248632443 0.0183772998 0.0314900219
#> A6 B1 B2 B3 B4
#> 0.0113182436 0.0469665913 0.0003981801 0.0136025769 0.0019011705
#> B5 B6 C1 C2 C3
#> 0.0057056253 0.0022844660 0.0134712409 -0.0021381830 0.0126151941
#> C4 C5 C6 D1 D2
#> -0.0139137033 0.0110247077 0.0084896655 -0.3943943267 0.0618459428
#> D3 D4 D5 D6
#> -0.0694671431 0.0465708687 -0.0526203987 -0.0140823150
#> attr(,"class")
#> [1] "eft" "numeric"
# Unfold coefficients for statistical analysis
boteft_unfolded <- unfold(boteft, coe)
# Or without prefix
boteft_unfolded <- unfold(boteft, coe, .prefix = "")
# Principal component analysis on coefficients
# pca_result <- stat_pca(boteft)
# Linear discriminant analysis by bottle type
# lda_result <- stat_lda(boteft, type)
